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Transition to turbulence in a circular Couette system is followed numerically up to 
the state beyond the second bifurcation in the limit of the narrow gap between coaxial 
cylinders which rotate with almost equal speeds in the same direction. Taylor-vortex 
flow, which emerges after the Taylor number T exceeds its critical value T, = 1708, 
becomes unstable to two different types of non-axisymmetric disturbances, depending 
on 9 (the Reynolds number) and 8, which measure the velocity difference between 
the cylinders and the mean angular velocity respectively. Finite-amplitude calcula- 
tions show that one part of the bifurcating flow is characterized by the vortices 
winding out of phase in the axial direction but still keeping the boundaries between 
vortices unaffected. The other is distinguished by the vortex dislocation. The inflow 
as well as the outflow boundaries between vortices are wavy. Both types of solutions 
are stationary in the frame of reference rotating with the angular velocity 8. 

1. Introduction 
The problem of instabilities occurring in flows between rotating coaxial cylinders 

can be traced back to the early works by Rayleigh (1880) and Taylor (1921, 1923). 
Since then, because of its simple configuration, the circular Couette system has served 
as a suitable testing ground for comparison between experimental observations and 
theories on transition to turbulence. Because the papers written on this system are 
too numerous and have revealed too complex a variety of transition sequences to 
mention them all, we refer to just two text books, by Chandrasekhar (1961) and 
Drazin & Reid (1981), for a general review and the article by DiPrima & Swinney 
(1981) for its emphasis on dynamical systems. In contrast to the huge amount of work 
done for the counter-rotating case and the case with the outer cylinder at rest, the 
only thorough study concentrating on the case with corotating cylinders is the recent 
work by Andereck, Dickman & Swinney (1983). Using an apparatus with radius ratio 
0.883, they found five new types of flow. The reason that there has been less attention 
given to the corotating case, in spite of its relevance in the astrophysical and 
geophysical context, seems to partially rest on the fact that mathematically the case 
is closely related to the Convection problem, which has already been explored 
rigorously. In fact, the axisymmetric Taylor problem of the corotating case in the 
limit of no curvature effect becomes identical with the two-dimensional problem of 
convection in the horizontal layer heated from below, with the Prandtl number unity, 
up to the second bifurcation. However, once the problem depends on the third 
dimension, a separate treatment is required and at this level of bifurcation, which 
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lies far beyond the linear criticality, the analysis must resort to numerical calculation. 
This is the region which the present paper is to investigate. A relatively simple 
manipulation of the rectangular coordinate system also gives the basis for the analysis 
on the successive bifurcations to be followed. 

2. The formulation of the problem 
We consider a viscous incompressible fluid between two concentric cylinders of 

infinite extent in the axial direction. The inner and the outer cylinders, with radii 
R, and R, respectively, can rotate independently about their common axis with 
angular velocities 52, and 52,. The motion (u,, ue, u5) of this fluid is governed by the 
following equations in a cylindrical coordinate frame ( r ,  8, y) which is uniformly 
rotating with mean angular velocity = +(ai + 52,) : 

I 

where v is the kinematic viscosity and the pressure p includes all the scalar quantities 
reducible to gradient terms in the equations. The material derivative 

and the Laplacian operator 

have been employed. 
The Couette solution 

us = 0, 
RE + R; RER? 1 ue = -+(52,-52 ) ~ r+(Qi-52,)-- 

O RE-Rf RE-R,2 r '  u, = 0, 

- d P  = ue(?+2a>, 
dr 

satisfying the no-slip boundary conditions on both cylinders 

(3)  
r = R,; u, = 0, uo = +(52,-52,) Ri, u5 = 0, 

r = R,; u, = 0, ue = -t(Qi-Q,) R,, u5 = 0, 

is known to exhibit the simplest symmetry that takes place in the real situation. We 
deal with the transition sequence bifurcating from this basic state. 

In  order to simplify the problem, we assume that the gap D = R, - R, between the 
cylinders is sufficiently small compared with the mean radius R =  +(R,+ R,), 

I 

D 4 E. 
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Further, the angular velocity of a fluid with respect to the rotating frame of reference 
is assumed to be much smaller than a, 

Since it is reasonable to suppose that 

O(UJ - O(%) 

in general, the use of the rectangular coordinate system 

x=- ( r  - IF) Re c 
D ’ ”%’ ’=- D ’  

can be assured. Taking D2/v as the timescale, v / D  as the velocity scale and v2/D2 
as the pressure scale, we get the non-dimensionalized equations for fluctuations 
u = (u, v, w) and p from the basic state 

u=o, V=-wx, w = o ;  (4) 

v - u  = 0 (5a) 

aU a dV 
-+u*vu+ V - u + u - j + O R x u  dx = - V P + V ~ U ,  
at a Y  

where the unit vectors j and correspond to the y -  and z-directions respectively (see 
figure l), and the operators V and V2 take the Cartesian expressions. Thus, the 
subsequent bifurcations are determined by two parameters : 

the Reynolds number 
(8, - G?,) IFD w =  

V 

(8, + 8,) D2 
and 8 =  

V 
(7) 

The strength of the shear across the cylinders is represented by L@ whereas Q measures 
the Coriolis effect. 

It is convenient to separate the fluctuation u into the average part 

j T ( t ,  x) = c (8) 

and the residual J(t ,  x, y ,  z )  = u-jT. (9) 

The average, indicated by the bar, is taken in the y -  and z directions. Therefore, the 
mean velocity field 9, which is the yz-average of the total flow, is modified by from 
the basic state V: 

P(t,  2) = V(x)+ T(t, 2). (10) 

Then, we introduce the general expression for the solenoidal vector field J in terms 
of poloidal and toroidal parts 

P = v x (V x iq5) + v x i$, (11) 

+ + o .  (12) 

where i is the unit vector in the x-direction and q5 and $ are scalar functions with 
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R 

P 

FIQURE 1. Configuration of the  model. The analysis deals with the narrow-gap limit without 
curvature effect. 

Operations PV x V x and PV x on ( 5 b )  lead to  

a 2 P  a 
at 

a P  a 
ax at 

V 4 A ,  $ = Qa, A ,  $ + pay V 2 A ,  4 -p dy A ,  $ + i * V  x V x [Il*VIl] +- V 2 A ,  $, (13a) 

V 2 A ,  11. = -*a, A ,  $+ f a y  A ,  +-a, A ,  $-PV x [ii.VIl] +- A ,  I+%, (13b)  

where A ,  = (a2/ay2) + (a2 /az2 ) .  
Further, by taking the yz-average of the y-component of ( 5 b ) ,  we obtain the 

expression for the modification of the mean velocity by the action of the Reynolds 
stress : 

Prescribed no-slip conditions on the boundaries are 

3. The Taylor vortex 
Experiments suggest that  for the narrow-gap case Couette flow becomes unstable 

with respect to steady axisymmetric disturbances when the Taylor number T, defined 
in (19), exceeds some critical value T, provided p = Q0/ai is less than one. In our 
system 

*o - * - ( D / R ) W  
= 7& - * + ( D / R )  w 
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and without loss of generality we can take only the positive values of SZ. Therefore, 
we expect that the Taylor-vortex solution bifurcates first for W > 0 when T exceeds 
Tc. 

Letting a/at and a/ay in (13) be zero we get 

with the boundary conditions (14) 

It is noteworthy that the above equations and the boundary conditions can be 
reduced to those of the two-dimensional problem of convection in a horizontal layer 
(-a 4 x < i) heated from below with B Prandtl number of 1. In  fact, substitutions 
of 

(18) 8 = q a ,  II. + V )  

and T = SZ(W-SZ), (19) 

and simple manipulations on ( l6) ,  lead to 

where 8 and -a:,$ represent the temperature deviation from the conductive state 
and the vertical component of velocity respectively, with the boundary conditions 

In this context, T defines the Rayleigh number. It is well known from the nonlinear 
theory of convection (Clever & Busse 1974) that the two-dimensional roll solution 
with horizontal wavenumber y = 3.117 sets in supercritically when the Rayleigh 
number is increased above its critical value of 1708. 

The analysis starts with finding finite-amplitude Taylor-vortex solutions numeri- 
cally above the T = a(W-a) = 1708 curve in the (SZ,  9)-space whose first quadrant 
is bounded by the rigid rotation line W = 0 and the plane-Couette-flow limit 52 = 0 
(see figure 2). The Taylor number is positive or negative in the regions above or below 
the Rayleigh line W = 52 (T = 0) and for each curve of T = const. ( > 0) the minimum 
values of W occur on the line SZ = 49. 
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FIQURE 2. The Taylor number T = Q(9-0) 

After 4, + and are expanded by sets of orthogonal functions in each direction 
so that (12) and (17) are satisfied, i.e. (see Chandrasekhar 1961) 

where 
sinh piz x sin pi2 x 
sinh?p, sin&, 

- (I : even), 

gl(x) = sin Zn(x + +) 

tanh ?pi - tanh tva = 0, 
and vt, pt are solutions of 

coth $i - cot bt = 0, (24b) 

we multiply e-in'yzflt(x), e-in'yzgt,(x) and sin 2k'xx by (16a, b,  c )  respectively, and take 
the average in the 5- and z-directions. 

For numerical purposes, the resulting infinite set of nonlinear homogeneous 
algebraic equations for expansion coefficients a,,, b,, and ck must be truncated. 
Omitting coefficients and equations which do not satisfy 

I +  In1 < NT,  k < A$, (25) 
where the truncation parameters NT and Nk are some integers (usually Nk x iNT 
since f,(z) or gl(x) includes both symmetric and antisymmetric functions whereas 
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sin2knx is antisymmetric in z), we use the Newton-Raphson method in which 
initially guessed values for qi, representing a,,, b,,, and ck, are iterated until they 
scarcely change as the iteration number It is increased by one: 

qjZ,+1) - q p  
< E (i = 1, 2, ...). I q p  I 

We choose E = 1.0 x 
The total number of qg can be reduced by three quarters for fixed truncation 

numbers compared with all the possible combinations of integers 1 and n if the 
symmetric properties of 9 and $ are taken into account. First, since q5 and $ are real, 

a1-, = a:,, bl-,, = b:,, 

where the asterisk denotes the complex-conjugate. Secondly, interacting components 
are limited to the case where 1 + n = even, 

a,-, = a,,, bl-n = -b ,n ,  

because of the properties of nonlinear terms in the equations and the fact that is 
antisymmetric in x. In  trigonometric notation, the set 4, of closed interacting 
components 

is to be considered where n+ and n++ denote odd and even integers respectively, and 
F,(x) and Fa(x) represent symmetric and antisymmetric functions in x. 

Following Nagata & Busse (1983), well-converged values of coefficients of lower 
harmonics are compared for different truncation parameters. It is found that NT = 6 
or 8 is sufficient depending on T < 2500 or T < 25600. Even for T x 250000, NT = 10 
is good enough for reasonable accuracy; only 56 coefficients are included in the latter 
truncation level. 

Figure 3 shows a part of the region where Taylor-vortex solutions are obtained. 
The finite-amplitude vortices appear supercritically except for the wavenumber y less 
than 1.4. In  the region between y x 1.4 and the neutral stability curve values of 
coefficients did not converge showing random oscillations, without correlation among 
themselves, with respect to iterations. However, outside the neutral curve, distur- 
bances became smaller and smaller by iterations retrieving to the Couette-flow 
solution. 

on the meridional plane are 
shown in figure 4 for the typical Taylor number. Since the critical Taylor number 
occurs at the wavenumber y = 3.117, the most unstable bifurcating vortex is confined 
to a torus of almost square cross-section (n/y x 1).  As the Taylor number is increased, 
the circulation of the vortices becomes stronger keeping the centre of each vortex 
unchanged in position. In addition to the circulations with alternating sense along 
the vertical direction, the velocity field consists of the horizontal disturbance 
component a$-/& whose profiles on the middle plane x = 0 are depicted in figure 5 
for various values of T .  In view of the convection problem, 9 and 8 = Q(a,$+ v)  
are determined by T( = T(W, a)) only. Therefore, the strength of the circulation is 
invariant with fixed value of T whereas the vertical shear gets stronger as 52 decreases. 

Lines of constant values of the stream function 
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FIGURE 3. The Taylor number T as a function of the wavenumber y according to  linear theory (solid 
line): 0 ,  parameter values for which the nonlinear Taylor-vortex solutions have been obtained; 
0, points where the circular-Couette-flow solutions are retrieved; x , indicates when attempts to  
obtain a converged solution failed. 

R z = -  
Y I 

FIGURE 4. Lines of constant values of the stream function a#/& on the meridional plane for different 
values of T. 0 = &9P, y = 3.117. (a) T = 2500, A = 1.0; ( b )  T = 10OO0, A = 4.0; (c)T = 22500, 
A = 4.0; (d )  T = 40000, A = 4.0. 
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) T = 2500 

&/ :Oooo 

-10000 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000 10000 

m w i a y )  
FIGURE 5. The profile of the horizontal component aqk/az of the disturbance velocity ii for 

different values of T. y = 3.117. 

x = 0.5 

r;/w 
FIGURE 6. The modification of the mean flow P = V +  for different values of T. 52 = 4.9, 

y = 3.117. 

In  the plane-Couette-flow limit (52+0), a$/az approaches infinity on the vortex 
boundaries for each T 2 1708. The jet-stream structure near the vortex boundaries 
and additional inflexion points for large T seem to be responsible for instabilities of 
axisymmetric vortex flows especially when 52 is relatively small. Figure 6 shows how 
the mean flow f = V + is modified as W increases. It appears that  the modification 
becomes saturated for %? greater than 400. It is appropriate to  use torque, the value 
of -d v/dx a t  x = *$, as the measure of the strength of the Taylor vortex. As shown 
in figure 7, the wavenumber at which the strongest torque is exerted is in the central 
range, which is shifted from 3.117 to  a larger value with increasing Taylor numbers. 
Correspondingly, the mean flow P = V+ is less modified towards smaller or larger 
values of y for which finite-amplitude solutions are possible (figure 8), indicating that 
the momentum transport is not effective for vortices with wavenumber y outside the 
central range. 
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0 2.0 4.0 6.0 8.0 10.0 12.0 1 1 0 0 ~  .O 
Y 

FIQURE 7. The torque 7 = -dv/dxl,,,; exerted by the Taylor vortices on the walls as a 
function of the wavenumber y for different values of T. = $. 

FIGURE 8. The modification of the mean flow v for different values of y.  T = 5000, R = $%. /? is 
the azimuthal wavenumber. 

4. Stability of the Taylor vortex 

an arbitrary three-dimensional infinitesimal perturbation 
In order to  examine the stability of axisymmetric Taylor vortices, we superimpose 

s = {V x (V x @)+V x f$F} (28) 

on steady finite-amplitude solutions u. Neglecting quadratic terms in (13a, b ) ,  we get 



Couette flow between almost corotating cylinders 239 

Since the steady solution u is periodic in z, infinitesimal perturbations have the same 
periodicity as u with additional exponential dependencies in the y- and z-directions 
as well as time t : 

The growth rate a is to be evaluated for each Floquet parameter d and b ,  which are 
taken to be positive real. By multiplying (29a) and (29b) by e-in’ycfl,(x) and 
e-in’~zg,,(x), and taking the average in the x- and z-directions, (29) can be reduced to 
the eigenvalue problem 

FX = ax. (31) 

The matrix F is not symmetric in general and the eigenvector X is composed of 
coefficients CZ,,, gln with 1 ,  n satisfying (25) at the same truncation level as the steady 
axisymmetric vortices u. We regard the steady axisymmetric vortices as stable 
provided that all the eigenvalues CT have negative real parts. On the other hand, the 
flow is regarded as unstable if there exists at least one eigenvalue whose real part 
is positive. In contrast to the steady finite-amplitude axisymmetric solutions, r$ and 
$ are complex. Also the coefficients ti,,,, 6,, with n = 0 are allowed (the components 
with n = 0 are taken care of by in the steady axisymmetric solutions). The first 
terms in (29a) and (29b) show that 6 and $ lose their symmetric properties in x 
because p is antisymmetric in x. Furthermore, terms including a in the coefficients 
indicate that the symmetric properties in z are also lost when b =+ 0, because of the 
partial derivative of z. The above argument allows us to concentrate on two 
different sets of interacting components 4, and ‘@,, when b = 0: 
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Y 
FIGURE 9. Stability regime of the Taylor vortices for a = ?W. The outer parabolic curve (---) 
indicates results of linear theory. The region of stable Taylor vortices is bounded by the 
sideband instability boundary ( - -  - -) from below and the in-phase mode instability (-) from the 
left. The boundary of onset of the out-of-phase mode instability (......) is also shown. Steady 
solutions could not be obtained in the region to the left of the line (.-.-.- ). 

The notations n+, n++, Fa, Fs are described following (27). Forb + 0 components from 
&I and from gI1 interact each other, creating the combined set &I+II: 

@I+II = &I +4Y11. (33) 

Since ii, = i3& 6- "9, vortices are confined by the horizontal planes of zero vertical 
velocity for the set in contrast to the case QII where boundaries between vortices 
are wavy. 

For the majority of the calculations we choose 10 for the truncation number NT, 
in which case the rank of t h e  matrix F becomes 200 for b + 0. The growth rate at 
the truncation level NT = 10 differs by only 1 yo from the value a t  NT = 9 when 
9 = 200 and SZ = 100. However, the convergence gets worse as 9 increases. For 
example, when A? = 450 and SZ = 225 it is 15:/, at NT = 10. Since the stability 
analysis serves to provide some guidance for pursuing nonlinear analysis for 
non-axisymmetric vortices, which will be described in the next section, the relatively 
rough evaluation will be permissible. 

In  figure 9 the axisymmetric vortices are shown to be stable for SZ = +A? in the region 
bounded by the sideband instability boundary from below and by the in-phase 
mode instability boundary from left. The sideband instability is characterized by 
axisymmetric modulation (d  = 0) and therefore its occurrence is identical with that 
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n= 41 

FIGURE 10. Points in (0, 9)-space where non-axisymmetric solutions were detected; y = 3.1 17 : A, 
class d,, B = 3.8 on Jz = 0.5 9, B = 4.0 on B = 0.8 41; A, class d,, @ = 4.5 on Jz = 0.5 9, /3 = 2.2 
on SZ = 0.8 W. The stability boundaries of the Taylor vortex-flow against the in-phase mode (dotted 
line) as well as the out-of-phase mode (dashed line) are estimated by the stability analysis. A, points 
where the Taylor-vortex solutions are retrieved by decreasing 41 along the lines of 5219 = const; 
x and 8, the onset of the twisted Taylor vortices and the wavy-inflow-boundary vortices with 
twists, respectively, observed by Andereck et al. (1983). 

of the convection problem (Clever & Busse 1974). It grows monotonously, showing 
common features which can be seen in other contexts; i.e. the maximum growth rate 
resides on b / y  = a or (Nagata & Busse 1983). The in-phase mode instability results 
from interaction of the disturbance component in the set &I and occurs at b = 0. Also 
shown in figure 9 is the out-of-phase mode instability which occurs a t  b = 0 as well. 
The set &,, is responsible for this. The calculations in the case of SZ = 0.89 reveals 
that the out-of-phase mode instability becomes dominant rather than the in-phase 
mode instability. The preferred values of d for the onset of each mode decrease as 
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5213 increases. For instance, d = 3.8 on G! = 0.53 and d = 3.1 on G! = 0 .83  for c,, 
whereas d = 4.3 on 52 = 0 .59  and d = 2.2 on 52 = 0 .83  for when y = 3.117. Both 
the in-phase and the out-of-phase mode instabilities grow monotonously. 

Although it  is not shown in figure 9, instabilities showing an oscillatory mode 
(Im [a] =I= 0) have been detected a t  b x and d x 2 for the set 4?,+,,. For instance, 
when 3 = 250, 52 = 0.59, b = ?jy and d = 2, the growth rate with the biggest real 
part is = (4.0 f 0.3i) at y = 1.5 and a = (19.3 f 1.6i) a t  y = 1.2. The in-phase mode 
and the out-of-phase mode at b = 0 have the real growth rates a = 5.2 and u = 2.5 
respectively, when y = 1.5. They are 20.6 and 16.7 when y = 1.2 with d = 2. The fact 
that  this subharmonic oscillatory mode becomes as dominant as the monotonously 
growing modes when the wavenumber y gets smaller seems to be related to the 
inability to obtain well-converged axisymmetric solutions above the neutral curve 
for y 5 1.4 described in $3, although the Newton-Raphson iteration method does 
not necessarily follow the exact timesteps. 

5. Non-axisymmetric finite-amplitude vortices 
The fact that the steady axisymmetric vortices become unstable with respect to 

monotonously growing instabilities in the class 4, or &,, depending on G! is 
encouraging for seeking steady (in the rotating frame) three-dimensional nonlinear 
solutions. Also the appropriate values of the wavenumbers y in the axial direction 
as well as p in the azimuthal direction can be inferred from the Floquet parameters 
b and d that  have given the maximum growth rate. The wavenumber y remains the 
same as for the steady axisymmetric vortices since b = 0 for both instabilities 
resulting from the classes and whereas the wavenumber p is set equal to  d .  
Thus the representations assumed for $ and $ are 

0 0 0 0  00 

fl(4, (344 4 = x x x almn ei(mBU+nyz) 
1 - 1  m--m n--w 

which must satisfy (13a, b) with the time derivative omitted, and the boundary 
condition (13c). 

Since it is found that the simplest set do of three-dimensionally interacting 
components of $ and @ 

do = 

cos m+py cos n+yz Fs(x) 
cos m++py cos n++yz Fa(x) 
sin m+py cos n+yz F,(x) 
sinm++py cos n++yz Fs(x) 

'cos m'py sin n+yz Fs(x) 
cos m++py sin n++yz F,(x) 
sin m'py sin n+yz Fa(x) 

rsin ,++By sin n++yz F,(x) 

(35 ) 
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FIGURE 11.  The torque as a function of 91 for different values of B/W = const: y = 3.117. The 
Taylor-vortex solutions (-) bifurcate from the circular Couette flow (----). The torque is 
reduced as the onset of non-axisymmetric solutions (----,  the class d,  with /3 = 2.4; ..... ., the 
class d2 with /3 = 3.0). The torque for d,  with /3 = 3.8 is shown (-) on D = 0.891. 

does not include all the components in 4,, we must seek the possible bifurcation in 
the next-simplest sets of interacting components (see the Appendix). Among seven 
suchsets, onlyd,,  d,, &,and&, include theset4, (choosingm++ = 0). Furthermore, 
the sets d, and d, can be eliminated from the consideration because the stability 
analysis on 4, has detected no monotonously growing subharmonic instabilities. 
Choosing m+ = 1 and setting = d,  we find that the sets d, and d, also include all 
the infinitesimal perturbation components in 4, and '@II respectively. Therefore, we 
expect two different types of three-dimensional solutions to bifurcate from the 
axisymmetric vortex solutions in terms of the sets dl and d,. 

Following the procedure described in $3 (with additional manipulation in the 
azimuthal direction y ) ,  we obtain the non-axisymmetric vortex solutions in the set 
d, as well as d,. Each type of three-dimensional solution is detected in the 
(a, 9)-space as shown in figure 10, where the truncation number NT = 10 has been 
used in the formula 

1 + 21ml+ In1 < NT. (36) 

This formula has the advantage of reducing drastically the total number of 
components included in the calculation without greatly affecting convergence 
because of the strong background components with m = 0. Calculations show that 
the axisymmetric vortex solutions are retained with all the coefficients almn, blmn, 
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100 200 300 400 500 
91 

FIGURE 12. Average kinetic energy E = E,  + E, + E,  + E,  for ( a )  a = 0.59 and ( b )  a = 0.89. 
E,(i = 0, 1, 2 , 3 )  are defined in equation (38), y = 3.117. See the caption of figure 11  for /3 on each 
bifurcating curve. 

with m + 0, converging to  zero when W is decreased across the stability limit 
determined by the linear analysis on the axisymmetric vortices. After the onset of 
the second bifurcation the torque is found to  decrease for both classes as shown in 
figure 11. The reduced torque required for non-axisymmetric motions has been 
reported by Eagles (1974), who analysed nonlinear interactions of velocity components 
up to the cubic order in the case of the outer cylinder a t  rest. 
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FIGURE 13. The projection of the velocity vector for the non-axisymmetric solution associated with 
the class d ,  on the planes of (a) x = 0.25 and (b )  y = nx/4@ (n = 0, 1, 2, 3,4): 91 = 500, SZ = i91, 
B = 4.0, y = 3.117. 

The average kinetic energy 

( u - u )  = ((( v+ V ) j + d ) * ( (  v+ V ) j + d ) )  

= (( v+ V ) )  + ( J - d )  

is calculated for various velocity components : 

Eo =(P) = @?, ( 3 8 4  

E l =  ( ( V + V ) ' ) - ( V " ) ,  (38b) 

E,  = (d*d)m-o, ( 3 8 4  

E,  = ( J . a > m  + 0 ,  ( 3 8 4  

= (19V2A29-$A,+I)rn-o~ 

= ( 1 9 V a A 2 9 - ~ A 2 $ l ) m + 0 3  

where the brackets denote the average through the whole volume. 
It is apparent from figure 12 that the energy E,, required for the non-axisymmetric 

motion, is transferred from the energy E, of the axisymmetric parts of the fluctuating 
motion, while the energy El, extracted from the Couette solution V ,  is almost 
unchanged, i.e. the energy Eo+E, for the mean motion V+ V is nearly the same as 
for the axisymmetric solution. 

In order to visualize the flow pattern the velocity vectors are projected in figures 
13 and 14 on the plane x = 0.25 as well as the set of meridional planes for both classes. 
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........................ .................... ....... ............. ........._...-- :,: .,._........_ _.____ 
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FIQTJRE 14. The projection of the velocity vector for the non-axisymmetric solution associated with 
the class d2 on the planes of (a) = 0.25 and ( b )  y = nn/4b (n = 0, 1, 2, 3,4):  41 = 600, Sa = 29, 
B = 3.0, y = 3.117. 

For the class d,  the centres of the neighbouring vortices are separated and come back 
alternatively in periodic fashion along the azimuthal direction, keeping the planes 
of vortex boundaries horizontal. In the class d,  a new small vortex, which is produced 
in one cell, becomes as strong as the original vortex along the azimuthal direction. 
Until the produced vortex becomes weak again and is completely absorbed, the vortex 
in the neighbouring cell remains almost unchanged. Then the latter vortex follows 
the same branch-off process as the vortex in the adjacent cell has undertaken. Slight 
deviations from the horizontal planes are noticeable on the vortex cell boundaries. 

6. Concluding remarks 
By taking a special limit where the curvature does not play a role in the analysis, 

the symmetry with respect to the median plane x = 0 is established. The reason for 
the time independency, at  least up to the third bifurcation, is attributed to this and 
we are able to avoid the complicated interaction between wave components 
propagating with different phase velocities. The observation that the phase velocity 
approaches the mean velocity of the two concentric cylinders when the radius gap 
ratio becomes small is reported for other circular Couette systems with the outer 
cylinder at  rest (Jones 1981). 

It is interesting to compare the results with the experimental observations by 
Andereck et al. (1983). Of particular interest are the twisted Taylor vortices observed 
in the region close to the Rayleigh-stability boundary. This flow is characterized by 
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FIGURE 15. Dependence of the inner Reynolds number $ti for the onset of the twists on the axial 
wavelength h of the Taylor vortices by Andereck et al. (1983); (a) 9, = 815; ( b )  9, = 1060. Open 
circles and dots indicate the onset of the in-phase mode and the out-of-phase mode respectively, 
for a/9 = 0.5, 0.6, 0.7 and 0.8 obtained by the stability analysis in $4. 

a rope-like structure embedded in the Taylor vortices whose boundaries are essentially 
unaffected by the appearance of the twists. The pattern is in-phase in the axial 
direction and rotates with the mean angular speed of the cylinders. The inner- and 
outer-cylinder Reynolds numbers Wi and 9, defined by Andereck et al. can be 
expressed in terms of our W and G? as follows: 

a 2W 
Wi = i ¶ ( j q + = )  

2W), 
a, = -(--- l a  

2 1-q  l + q  

( 3 9 4  

where q is the radius ratio of the cylinders. Five sets of data in the (9,, go)-plane 
for the occurrence of the twists for y = x ,  available from their figure 3, are plotted 
in the (W, @-plane for y = 3.117 by using (39) with q = 0.883 and 52 = 0.59 (see 
figure 10). Andereck et al. reported a larger axial wavelength at lower Wi for the onset 
of the twists. Their figure 6 is reproduced as figure 15, which also shows the 
wavenumbers y for the onset of the in-phase and the out-of-phase modes obtained 
in the stability analysis for G?/g = 0.5,0.6,0.7 and 0.8, and plotted against W, using 
(39a, b). The in-phase mode follows the same tendency as the experimental findings 
for the twists, whereas the non-dimensional axial wavelength h becomes smaller at 
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first and then gets larger as W i  is decreased for the out-of-phase mode. From these 
comparisons with the experimental observations the non-axisymmetric flow resulting 
from the nonlinear interaction of the components in the class d, appears to  
correspond to the twisted Taylor vortices. We found that the azimuthal wavenumber 
p of the in-phase mode was /3 = 3.8 for 52 = 0.5W and p = 3.1 for 52 = 0.89. Since 
the number of twists in each Taylor vortex m ranges from 14 to 16 in the experiments 
with y = 2~12.4  = 5x16, the observed wavenumber ,8 is about half as small as our 
/3 if D / R =  0.117/0.91415 = 0.124 is taken in the expression 

p = mD/E. (40) 

However, it should be noted that the calculations of the torque for 52 = 0.89 show 
that p = 2.4 instead of 3.1 is most preferred at least for W > 420. Discrepancies seem 
to result from the curvature effect, which has been neglected (q = 1 )  in the analysis. 

It could be conjectured that if the curvature effect were taken into account the 
crossover point at (D, W) x (240,360) on 52 = $8 in figure 10 would approach to  
(320,400) on 52 = 0.89, where the onsets of two types of flows, the twists and the 
wavy-inflow-boundary vortices with twists, seem to coincide experimentally. Then 
the class d, would lose stability at higher W in the presence of a growing out-of-phase 
mode for 52 c 0.89, just as the experiment exhibits the transition from the twists 
to the wavy-inflow-boundary vortices with twists. The latter flow has a subharmonic 
character along the axial direction. Therefore, the experimental counterpart for the 
class d, is not obvious. There might exist another new flow which would correspond 
to this class for 52 > 0.89.  

It should also be remembered that only the bifurcation routes through the steady 
axisymmetric Taylor-vortex solutions have been considered in this paper; that  is we 
have ignored the possibility of direct three-dimensional bifurcations from the circular 
Couette flow, which might be taking the form of the interacting components in the 
set do or more entangled sets such as d,  +d, + d,, d,  + d, + d,, etc., even in the 
steady case. 

We have seen in the previous section that the onset of the two different classes of 
steady non-axisymmetric vortex solutions occur in close proximity. I n  particular, 
there is a crossover somewhere around D = $9 depending on which of the two classes 
bifurcates first. Therefore i t  is expected that neither of the classes is as stable when 
W is increased beyond the second critical value along the lines of 9/52 = const. 
Although the analysis on the stability of the non-axisymmetric vortex solutions has 
been formulated and programmed for a bigger computer, calculations have not yet 
been performed. Since the symmetric properties for interacting components are 
totally destroyed when d + 0, the high cost of computations is inevitable even if the 
truncation formula (36) is applied. 
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Appendix 
We list the sets of interacting components of 4 and $ which satisfy the three- 

dimensional nonlinear equations. All the following seven sets d , ( i  = 1, 2, ..., 7) 
include do (35) which is also closed for three-dimensional interaction. However, the 
set do alone does not include the set 9,(27), which constitutes axisymmetric Taylor 
vortices. 

d, 3 do (i = 1 , 2 ,  ..., 7) 
d o  * 9 0  

d,=do+ 4:  [ 
d, =do+ 

d,  = do+ 

d, =do+ 

d, = do+ 

d, = do+ 

cos m+py cos n++yz F!(x)  

cos m++py cos n+yz F,(z) 
sin m+py cos n++yz F,(z) 

sin ,++By cos n+yz Fa(%) 

cos m+py sin n++yz Fa@) 

cos m++py sin n+yz F,(x) 
sin m+py sin n++yz F,(x) 

sin ,++By sin n+yz Fa@) 

cosm+Py cos n++yz F,(z) 
cos m++py cos n+yz FJx) 

sin m+py cos n++yz Fa(%) 

sin ,++By cos n+yz F,(z) 

/cosm+py sinn++yz F,(z)\ 

cos m++py sin n+yz Fa@) 

sin m+Py sin n++yz Fa(x) 

\ sin ,++By sin n+yz ~,(z)l 

cos m+Py sin n++yz Fa@) 

cos m++py sin n+yz Fs(z) 

sin m+Py sin n++yz F,(z) 

sin m++py sin n+yz Fa@) 

cos m+By cos n++yz Fa(%) 

cos m++py cos n+yz F,(z) 

sin m+py cos n++yz F,(z) 

sin m++Py cos n+yz Fa@) 

cosm+py sin n+yz F,(z) 

cos m++py sin n++ yz F'(z) 
sin m+Py sin n+yz Fa(z) 

sin m++py sin n++yz F,(x) 

sin m+py sin n+yz F,(x) 

cos m++py sin n++yz F&z) 

cos m+py sin n+yz Fa(z) 

sin m++py sin n++yz Fa(x) 

11 
cos m+Py sin n++yz F,(x) 
cos m++py sin n+yz Fa(x) 

sin m+py sin n++yz &(z) 

sin m++py sin n+yz F,(z) 

I cos m+By cos n++yz F,(z) 

cos m++py cos n+yz Fa(x) 

sin m'py cos n++yz Fa@) 

sin m++py cos n+yz F,(z) 

cos m+py cos n+yz F,(z) 

cos m++py cos n++yz Fa(x) 

sin m+py COB n+yz Fa(x) 
sin ,++By cos n++yz F'(z) 

sin m+py cos n+yz Fs(x) 
cos m"py cos n++yz F,(x) 
cosm'py cosn+yz Fa(%) 

sin m++/3y cos n++yz F,(x) 
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sin m+py cos n+yz FJx) sin m+Py sin n+yz Fs(x) 

cos m++/3y cos n++yz FJx) cos sin n++yz FJx) 
&,=do+ [ 9: [ cos m+& cos n+yz F a ( x ]  ’ ” [ cos m+& sin n+yz Fa(%) )] 

sin ,++by cos n++yz Fa(x) sin m++/3y sin n++yz FJx) 

It is easy to show that the sets dl,  d,, d, and d, include 9, by setting m++ = 0. 
For comparison with 9,, expressed in (27), translate the z-axis by x / 2 y  for the set 
d,  The subharmonics ?jy must be introduced for the sets d, and d,. 
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